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Abstract. This paper presents a summary of measurements of the field and temperature dependence of
the ac susceptibility, magnetic hysteresis isotherms, and the zero field cooled (ZFC) and field cooled (FC)
moment. These results demonstrate that La0.5Sr0.5CoO3 is consistently and comprehensively described as
a ferromagnet with strong irreversibility. Analysis of the ac susceptibility demonstrates unequivocally the
occurrence of a continuous (second order) paramagnetic to ferromagnetic phase transition with mean-field-
like effective exponents (although estimates for the true, asymptotic critical exponents appear precluded by
the substantial anisotropy/coercivity, linked to the presence of Co ions). The behaviour of the irreversible
response is analyzed within the framework of a Preisach model which decomposes the magnetizing process
into a sequence of two-state Barkhausen excitations. The model is able to replicate the field and temperature
dependence of the hysteresis isotherms and the FC and ZFC moments, and shows that these response
functions are a product of field activated transitions over a spectrum of temperature dependent metastable
state excitation barriers, with a negligible contribution from thermal fluctuations.

PACS. 75.40.-s Critical-point effects, specific heats, short-range order – 75.40.Cx Static properties (order
parameter, static susceptibility, heat capacities, critical exponents, etc.) – 75.60.Ej Magnetization curves,
hysteresis, Barkhausen and related effects – 75.50.Cc Other ferromagnetic metals and alloys

1 Introduction

The (re)discovery of colossal magnetoresistance
(CMR) in the manganese perovskites (general formula
A1−xBxMnO3, where A is typically La, Y or another
rare-earth ion and B a divalent cation) has resulted in
their becoming – along with their cuprate counterparts
exhibiting high temperature superconductivity – some of
the most intensively studied compounds over roughly the
past decade [1].

While the La1−xSrxCoO3 system has not been as ex-
tensively studied of late as its Mn perovskite counterpart,
nevertheless its magnetic, transport and related proper-
ties have been widely reported ([2–5] and references listed
therein). Despite such investigations the magnetic prop-
erties, in particular, remain the subject of disparate in-
terpretation, as do those of the Mn perovskite family [6].
Some of these differences have been attributed to ther-
mally induced changes in the spin state of Co ions, var-
iously designated as Low Spin (LS, t62g(σ

∗/eg)0, S = 0),
Intermediate Spin (IS, t52ge

1
g, S = 1) or High Spin (HS,

t62ge
2
g, S = 2) [2–4]. However, for Sr content x > 0.2,

current consensus appears to support the appearance of
bulk ferromagnetism below TC ≈ 230 K (see, for exam-
ple, Ref. [4]), linked possibly with the suggestion that
increased Sr doping stabilizes the IS configuration. Nev-
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ertheless, the behaviour of specimens with x > 0.2 has
also been categorized [3] as ferromagnetic + cluster glass
(FM + CG), despite the fact that neutron scattering data
indicate the occurrence of long range ferromagnetism with
correlation lengths in excess of hundreds of Ås [2,7], a con-
clusion supported by calorimetric studies [8]. Thus, some
uncertainties still prevail in the description of the doping
region 0.2 < x � 0.5, with several references to so called
glassy ferromagnetic behaviour. While the latter originate
principally from perceived anomalies in the dynamic mag-
netic response (a strong frequency dependence in χ′ and
structure in χ′′) [2,9], ancillary effects have been identified
in the field dependence of the maximum in the zero-field-
cooled magnetisation. In particular, these maxima have
been attributed to the presence of considerable magne-
tocrystalline anisotropy in this system [3,9,10], and a phe-
nomenological expression suggested to account for some of
these anisotropy induced effects [10].

Here we present a summary of extensive measurements
of the field and temperature dependence of the real part
of the ac susceptibility, magnetic hysteresis isotherms, and
the zero-field cooled (ZFC) and field-cooled (FC) mag-
netisation of the prototypical compound La0.5Sr0.5CoO3.
These data are analysed quantitatively in terms of specific
models, enabling the former measurements to be utilized
to demonstrate the occurrence of a continuous (second or-
der) paramagnetic to ferromagnetic phase transition (con-
firming the earlier conclusions of Menyuk et al. [11]), and
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to deduce the associated critical exponents. Confirmation
of the true, asymptotic values for the latter are, how-
ever, precluded by the substantial anisotropy/coercivity
mentioned above, a point discussed in more detail be-
low. The behaviour of the FC and ZFC magnetisation
and the irreversible response is analysed within the frame-
work of a model which decomposes the magnetising pro-
cess into a sequence of two-state Barkhausen excitations.
As in related perovskites, oxygen stoichiometry can play
an important role in aspects of the behaviour of this
system, particularly for compositions x > 0.3 [12]. It is
not, however, our intention to produce specimens with
precisely defined composition, rather to produce a sam-
ple(s) with magnetic properties closely replicating those
displayed by samples of the same nominal composition
produced by other investigators, analysing such proper-
ties in the manner outlined above. The results of this ap-
proach demonstrate that La0.5Sr0.5CoO3 is consistently
and comprehensively described as a ferromagnet with
strong irreversibility.

2 Experimental details

Samples of nominal composition La0.5Sr0.5CoO3 were pre-
pared using standard ceramic techniques. Stoichiometric
quantities of La2O3 (99.99% purity) SrCO3 and Co3O4

were thoroughly mixed and ground for 24 h. by ball milling
in acetone. The dried powder was subsequently pressed
into pellet form and fired at 900 ◦C for 24 h. The pellet
was then reground, mixed with an inert binder, and then
refired in flowing oxygen for 24 hours at 1000 ◦C followed
by 96 h. at 1050 ◦C, the latter being close to that adopted
in several previous studies [2]. Powder X-ray diffraction
using Cu-Kalpha radiation indicated a single phase com-
pound and could be indexed to a pseudo-cubic perovskite-
like cell with lattice constant a = 3.838(4) Å; the latter is
in good agreement with previous reports [2,3] confirming
a composition close to the nominal value [5]. SEM mea-
surements yield a typical grain size of ∼1 µm.

Ac susceptibility and dc magnetization data were ac-
quired as a function of both field and temperature us-
ing a Quantum Design PPMS model 6000 magnetome-
ter/susceptometer on a sample of approximate dimensions
(6 × 1 × 1) mm3 cut from the final pellet, with magnetic
fields always applied parallel to the long axis.

3 Results and discussion

3.1 Behaviour in the vicinity of TC

The insert in Figure 1 shows the temperature dependence
of the zero field ac susceptibility χ(0, T ), measured on
warming, following zero field cooling, at 2.4 kHz with a
driving field amplitude of 30 mOe applied parallel to the
longest dimension. No thermal hysteresis was detected in
the measurement. χ(0, T ), corrected for background and
demagnetizing effects, increases abruptly with decreas-
ing temperature below 250 K, then exhibits a maximum,

Fig. 1. The ac susceptibility (in emu/g-Oe) corrected for back-
ground and demagnetizing effects plotted against tempera-
ture T (in K), measured in superimposed static biasing fields
increasing from 1 kOe (top) to 7 kOe (bottom). The insert
shows the corresponding zero field ac susceptibility.

the Hopkinson peak [13], below the ferromagnetic order-
ing temperature TC (as the following analysis confirms)
after which it decreases smoothly as the temperature is
lowered further. The data in the main body of Figure 1
shows the corresponding temperature dependent suscepti-
bility in static fields Ha applied parallel to the ac driving
field, increasing from 1 kOe (top) to 7 kOe (bottom). With
increasing Ha, the principal Hopkinson maximum is sup-
pressed in both amplitude and temperature, enabling a set
of secondary peaks (at temperatures designated Tm) to be
observed near 240 K in the susceptibility χ(Ha, T ). These
latter peaks, which decrease in amplitude and move up-
ward in temperature as Ha increases, reflect the presence
of critical fluctuations accompanying a continuous tran-
sition to a ferromagnetic state and their presence can be
understood on the basis of the fluctuation-dissipation the-
orem [14]. They are a feature predicted by the static scal-
ing law [15], from Monte Carlo simulations on the three-
dimensional Heisenberg model [16] and by numerical cal-
culations on mean-field models [17]. A detailed analysis
of the field and temperature dependence of these peaks
yields estimates for the usual critical exponents γ, β and δ,
as discussed previously for metallic, amorphous and semi-
conducting systems [15,18–20]. Consequently, the princi-
pal conclusions alone are summarized below. What needs
to be reiterated here however is that conventional critical
point analysis (the approach utilised previously to esti-
mate γ and δ for this system at this [11] and other [21]
compositions) is usually based on the use of modified
Arrott plots at fixed temperatures) from which the sponta-
neous magnetization and inverse initial susceptibility are
found by extrapolation from finite field (often hundreds
of Oersteds to one or two kOe) [6,11,21]. Such an ap-
proach avoids the asymptotically low field region (and, to
a lesser extent, the low reduced temperature region) which
is precisely the regime of validity of the static scaling law.
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Fig. 2. (a) The critical peak amplitude taken directly from
Figure 1 plotted against the internal field Hi on a double-
logarithmic scale. The solid line yields the δ∗ value shown.
(b) A double-logarithmic plot of the (reduced) critical peak
temperature taken from Figure 1 against the internal field.
The solid line corresponds to the value of γ∗ + β∗ shown.

This procedure is adopted because the measured response
unavoidably contains both critical and non-critical con-
tributions. The former – the singular component arising
from critical fluctuations – is what needs to be used in
a comparative analysis with scaling law predictions. The
latter, also called the regular or technical response, arising
from processes such as domain wall motion, coherent ro-
tation, etc., do not form part of such analysis, and hence
need to be removed. This can be accomplished by driv-
ing the system to “technical saturation”, an extrapolation
from which eliminates the corresponding component. This
is the philosophy behind the modified Arrott plot extrapo-
lation procedure [18], and while it is unquestionably neces-
sary, there is no quantitative criterion that can be applied
which ensures that the technical contribution is indeed
saturated and the critical component dominates the sub-
sequently measured response. The technique adopted here
avoids this difficulty; when the critical peak structure ev-
ident in Figure 1 appears, there is no question that the
critical response dominates; the limitations to this tech-
nique (discussed in more detail below) is that the critical
behaviour cannot be assessed in regimes where these peaks
are masked by the (unsaturated) technical response.

Figure 2a shows the critical peak amplitude χ(Hi, Tm)
obtained directly from Figure 1 plotted against the inter-
nal field Hi(= Ha − NM , where N is the demagnetizing
factor and M is the magnetization) on a double logarith-
mic scale. (N was estimated by approximating the sample
by an ellipsoid with principal axes equal to the dimensions
given above, and then evaluating the corresponding ellip-
tic integral [22]. This procedure is necessary because the
field dependence of the magnetization does not “shear”.)
The scaling law predicts a power law relationship between
these two quantities given by [15–20]

χ(Hi, Tm) ∝ H
1/δ−1
i (1)
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Fig. 3. The critical peak amplitude taken directly from Fig-
ure 1 plotted on a double-logarithmic scale against the (re-
duced) critical peak temperature taken from the same figure.
The straight line yields the γ∗ value indicated.

which enables an estimate for δ to be made, independent of
any knowledge of, or a choice for, TC , a second advantage
of this technique. The straight line drawn in this figure
confirms the power law prediction of the above equation,
while a least squares fit yields a slope from which the
(effective) exponent δ∗ (discussed below) is found to be:

δ∗(H) = 2.70 ± 0.03 for 1 kOe ≤ Hi ≤ 8 kOe.

Close examination of Figure 2a reveals slight curvature,
with data points at higher field yielding higher (effective)
exponent values. Fitting to the seven highest field points
in this figure yields:

δ∗(H) = 2.93 ± 0.04 for 4 kOe ≤ Hi ≤ 8 kOe.

Both of these estimates are close to mean-field model pre-
dictions.

These same approaches [15–20] relate the tempera-
ture Tm of the critical peak maxima obtained directly from
Figure 1 to the (internal) field via

tm =
Tm − TC

TC
∝ H

(γ+β)−1

i (2)

and to the field dependent peak susceptibility
χ(Hi, Tm) as:

χ(Hi, Tm) ∝ t−γ
m . (3)

Both of these power law relationships can only be tested
once a choice for TC has been made, in contrast to equa-
tion (1). This choice is made by initially plotting Tm

against H
(γ+β)−1

i , with the Hi = 0 intercept providing
a first estimate for TC = 230.9 ± 0.2 K [23]. The dou-
ble logarithmic plots of tm vs. Hi in Figure 2b, and of
the critical peak amplitude χ(Hi, Tm), obtained directly
from Figure 1, against tm, shown in Figure 3, utilize this
estimate. The least squares fitted straight lines drawn in
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these figures verify the power law relationships contained
in equations (2) and (3), and yield:

(γ∗ + β∗) = 1.52 ± 0.03 for 1 kOe ≤ Hi ≤ 8 kOe

γ∗ = 0.94 ± 0.02 for 1.9 × 10−2 ≤ tm ≤ 6 × 10−2.

As with Figure 2a, a fit to the data above tm ∼ 3 × 10−2

in Figure 3 yields:

γ∗ = 1.02 ± 0.05.

All of the above have been designated as effective exponent
values due to the reduced temperature (t) and field range
accessed by the present experiment, a limitation that is en-
countered in evaluating critical exponents from measure-
ments following the crossover line in systems where techni-
cal saturation is not easily accomplished. (By contrast, in
technically soft systems, PdFe [24], for example, such mea-
surements can be extended to very small fields ≈ 0.04 Oe.)
Nevertheless the present estimate for TC is in very good
agreement with that estimated by Menyuk et al. [11]
(TC = 228.4) using conventional Arrott plot techniques
on a sample with the same nominal composition; similarly,
both the current and these previous measurements yield
estimates for δ (= 3.05± 0.06 [11]) close to the mean-field
prediction, while the present approach yields an estimate
for γ (and β) more consistent with the same model pre-
diction than did the earlier studies (γ = 1.27±0.022 [11]).
Whether this reflects the use of differing techniques is
difficult to resolve, especially as both sets of exponent
estimates were extracted from data obtained exclusively
above TC , and hence cannot be influenced by any possi-
ble spin configuration modification that might occur at
TC [21]. Furthermore, the final choice for TC adopted
above places it above the principal Hopkinson maximum in
the zero-field susceptibility, as is usual [13], in contrast to
those reported in reference [21] for samples with lower Sr
content. The (effective) exponent values reported above
are thus approximately consistent with earlier estimates
for γ and δ using complementary techniques on a spec-
imen of the same nominal composition, and with mean-
field model predictions (more correctly, the latter model,
as well as the Ising model subject to dipole-dipole inter-
actions [25]). While this result disagrees with recent pre-
dictions of Heisenberg like behaviour in double-exchange
(DE) dominated systems [26], experimental data on a
wide range of related materials, including Mn perovskite
films [27] and bulk polycrystalline ceramic samples [28]
also yield similar exponent values to those reported above
(and in the case of films, is accompanied by a more
elaborate discussion of theoretically predicted behaviour,
which is therefore not repeated here). In the case of bulk
LaSrMnO however, single crystal [6,29] critical exponent
estimates differ from the quasi mean-field values found in
polycrystals, a result that has recently been discussed in
terms of the possibility of crossover (3D Ising/Heisenberg
to mean-field) induced by a finite polycrystalline grain
size [6]. However given the much larger grain size of
∼ 1 µm, this seems a very unlikely scenario for the present
system (all other parameters being equal).

Fig. 4. Measurements (discrete points) and numerical simula-
tions (solid curves) of the FC and ZFC moment as a function
of temperature in four applied fields Ha.

Given the importance of the technical components in
the magnetization in assessing these critical exponents, a
detailed appraisal of their behaviour is presented below.

3.2 Characterizing the irreversible response

The irreversible response of the system was characterized
experimentally by measuring (a) the temperature depen-
dence of the total moment M(T ), under both field cooled
(FC) and zero field cooled (ZFC) conditions, over a tem-
perature interval 5 K ≤ T ≤ 300 K which encompasses
the entire ordered phase, in a wide range of applied fields
between 50 Oe ≤ Ha ≤ 1000 Oe, and (b) major hystere-
sis loop isotherms in fields between −20 kOe ≤ Ha ≤
+20 kOe, up to technical saturation, over a broad range
of temperatures 5 K ≤ T < TC which also spans the
ordered phase. Figure 4 shows some representative ZFC
and FC data (discrete points), measured on warming from
T = 5 K in various external fields Ha, after first cooling
from T = 300 K in zero field and in the external field,
respectively. The FC and ZFC branches display a pro-
nounced bifurcation below TC , which is particularly ap-
parent in low applied fields. The temperature dependence
of the ZFC branch is characterized by a maximum, which
becomes progressively broader and shifts to lower temper-
atures in response to increases in Ha. The FC branch has
a temperature dependence which is monotonic and which
has essentially the same shape in all fields. FC-ZFC ther-
mal bifurcation always coexists with hysteresis in magne-
tizing isotherms, and Figure 5 shows some representative
measured major loop isotherms (discrete points), at sev-
eral different temperatures, selected so as to illustrate the
systematic collapse of the saturation moment, the satu-
ration remanence, and the coercive field as the system is
warmed through the ordered phase towards TC . The solid



A. Senchuk et al.: La0.5Sr0.5CoO3: A ferromagnet with strong irreversibility 289

Fig. 5. Measurements (discrete points) and numerical sim-
ulations (solid curves) of major hysteresis isotherms at four
representative temperatures T .

curves in Figures 4 and 5 represent model simulations de-
scribed below.

Irreversibility in macroscopic response functions like
these is a signature of metastability in the free energy
landscape, that is, the existence of many local minima
each of which represents a locally stable configuration of
magnetic domains. The magnetization process essentially
consists of a sequence of Barkhausen transitions between
metastable states, each of which is inherently dissipative,
activated by changes in field and temperature. Macro-
scopic response functions can provide a sensitive probe
of the Barkhausen excitation spectrum, and the Preisach
model of hysteresis offers the natural theoretical platform
for such an interpretation. The model [30–33] resolves each
metastable configuration into an ensemble of hypotheti-
cal two state subsystems, and each configuration is spec-
ified by listing all of the individual subsystem state as-
signments, although no spatial correlations between the
subsystems and the domain pattern are implied. Each sub-
system represents a cluster of spins of moment µ which
is reversed cooperatively during a Barkhausen event,
when the entire system evolves spontaneously from one
metastable state to another, and each is characterized
by a double well free energy landscape with two states
ϕ = ±µ, a dissipation barrier Wd = µHd, which measures
the energy irreversibly dissipated as heat in a Barkhausen
event, and a level splitting Ws = 2µHs, which measures
the energy stored reversibly in an event. Equivalently, the
subsystems may be characterized by two free energy bar-
riers to moment reversal W± = µ(Hd ± Hs), with critical
excitation fields α = Hd − Hs and β = −Hd − Hs. Each
subsystem has a history dependent response function with
an upper branch m+ = (1 − f)µ ± fµ(1 − exp(−λ|Ha|))
for Ha ≥ β and a lower branch m− = −(1− f)µ± fµ(1−
exp(−λ|Ha|)) for Ha ≤ α, with 0 ≤ f ≤ 1, where the
second term represents the elastic component of the wall
motion. A given magnetic material is characterized by a

spectrum of dissipated and stored energies Wd and Ws

which is represented by a distribution of characteristic
fields, in this case, the product of a Lorentzian and a Gaus-
sian:

p(Hd, Hs) =

(σd/π)
[
(Hd − H̄d)2 + σ2

d

]−1 · (2πσ2
s)−1/2 exp(−H2

s /2σ2
s).
(4)

Thermal fluctuations reduce all free energy barriers by
W ∗(T ) = kBT 
n(texp/τ0), where texp is the experimen-
tal measurement time constant and τ−1

0 is a fundamental
characteristic frequency which is related to the curvature
of the potential well [30]. Explicit variations in the char-
acteristic energies Wd and Ws with temperature are mod-
elled by allowing the spontaneous moment µ(T) and the
parameters H̄d(T ), σd(T ), and σs(T ), which define the
distribution of characteristic fields p(Hd, Hs) to vary with
temperature. The total moment M of the assembly in an
external field Ha at temperature T is a history dependent,
weighted sum of the responses from all of the individual
Barkhausen subsystems:

M =
∫ ∞

0

dHd

∫ +∞

−∞
dHs m(Hd, Hs, Ha, T ) p(Hd, Hs)

(5)
where the moment m(Hd, Hs, Ha, T ) of each subsystem
assumes the values m = m+, or m = m− or, if the element
is in thermal equilibrium, m = µtanh[µ(Ha + Hs)/kBT ].
For a given field Ha and temperature T , the choice de-
pends on the history of field and temperature excursions
which characterize a specific experimental protocol. These
are described in detail in reference [32], and will not be
reproduced here.

Numerical simulations show [32] that the individual
macroscopic response functions differ in their sensitivity
to the two characteristic energies which define the double
well free energy landscape. Thus, the field and tempera-
ture dependences of the ZFC moment and the hysteresis
isotherms are determined primarily by the properties of
the distribution of dissipation barriers, while the FC mo-
ment is most sensitive to the distribution of stored en-
ergies. These relationships have been exploited to gener-
ate numerical simulations of the response functions (solid
curves in Figs. 4 and 5), and thus to quantify the spec-
trum of Barkhausen excitations. The numerical values of
the fitting parameters are summarized in Table 1 and in
Figure 6, which shows the temperature dependence of the
Barkhausen moment µ(T )/µ0, the most probable dissipa-
tion field H̄d(T )/H̄d0, the dispersion of dissipation fields
σd(T )/σd0, and the dispersion of bias fields σs(T )/σs0,
along with the thermal fluctuation field W ∗(T )/W̄d(0),
and the measured coercive field Hc/H̄d0, all normalized
to their zero temperature values. With the exception of
a weak systematic upward trend in σs0 with increasing
field Ha and in λ with increasing temperature T (both
of which are probably symptomatic of the oversimplified
treatment of reversibility), it is possible to replicate all the
principal features of the response in Figures 4 and 5 with
a single set of parameter values.
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Fig. 6. The temperature dependence of the measured coercive
field Hc(meas)/H̄d0, and of the model parameters µ(T )/µ0,
H̄d(T )/H̄d0, σd(T )/σd0, σs(T )/σs0, and W ∗(T )/W̄d(0).

Table 1. Characteristic Parameters of the Barkhausen Spec-
trum of La0.5Sr0.5CoO3.

µ0 (emu) ≥ 2.0 × 10−14

H̄d0 (Oe) 2000 ± 5%

σd0 (Oe) 1100 ± 5%

σs0 (Oe) 100 − 180 ± 10%

f 0.4 ± 10%

λ (Oe−1) 0.26 − 0.40 ± 5%

Msat (emu) 3.3 ± 10%

TC (K) 233 ± 2%

ln(texp/τ0) 25

The physical picture which emerges from the anal-
ysis may be summarized as follows: (1) In low applied
fields Ha < 100 Oe, where the contribution from the
elastic component is negligible, the thermal profile of the
FC moment is essentially an undistorted image of the
evolution of the Barkhausen moment µ(T ) with temper-
ature. This evolution may originate either from critical
changes in the spontaneous moment or from the noncrit-
ical “growth” of the Barkhausen elements. In either case,
the Barkhausen moment µ(T ) vanishes as T → TC and
the magnetically ordered state dissolves, as expected. (2)
In the same weak field limit, the field dependence of the
FC moment at a fixed temperature T is defined almost
exclusively by the characteristics of the distribution of
bias fields g(Hs). Assuming a Gaussian form for g(Hs),
the fits yield a dispersion σs0

∼= 150 Oe, with a negli-
gible temperature dependence. (3) Thermal fluctuations,
which are represented in the model by the thermal vis-
cosity field H∗

T ≡ (kBT/µ(T )) · 
n(texp/τ0), play an in-
significant role in defining the temperature dependence
of the magnetic response in this system, except perhaps

just below the critical temperature TC , where the thermal
field H∗

T begins to diverge. The ineffectiveness of thermal
fluctuations is a reflection of the size of the Barkhausen
elements, and the simulations were able to place a lower
bound on the zero temperature Barkhausen moment µ0 of
µ0 ≥ 2.0 × 10−14 emu. The La0.5Sr0.5CoO3 system is a
sintered granular material with, according to SEM mea-
surements, a typical grain size of ∼ 1 µm. Assuming an
average Co moment of 2.5 µB , this yields a saturation mo-
ment per grain between (2–5)×10−10 emu. Thus the lower
limit on the Barkhausen moment is orders of magnitude
less than the saturation moment of a grain (a result which
is not sensitive to the specific value assumed for the av-
erage Co moment), which suggests that the Barkhausen
excitations in this system probably originate from the mo-
tion of spatially localized domain wall fragments which
are activated over local pinning barriers. (4) The ZFC re-
sponse to a positive applied field Ha at any temperature T
is due to the reversal of those Barkhausen elements which
are trapped in their ϕ = −µ state during zero field cooling,
and then excited into their ϕ = +µ state by a combina-
tion of field energy and thermal fluctuation energy. The
activation condition for a Barkhausen element with char-
acteristic fields (Hd, Hs) is Hd(T ) − Hs(T ) < Ha + H∗

T ,
so that the temperature dependence of the ZFC moment
is defined by a combination of barrier growth, specifically
W−(T ) = µ(T )(Hd(T ) − Hs(T )), and thermal relaxation
W ∗(T ) = kBT · 
n(texp/τ0). In La0.5Sr0.5CoO3, the con-
tribution from thermal relaxation is negligible, and the
growth of the ZFC moment which is observed in all fields
in Figure 4 as the system is warmed from low tempera-
tures through the ordered phase, originates entirely from
the collapse of the Barkhausen dissipation barriers, al-
though this trend is opposed, and eventually reversed at
higher temperatures, by the collapse of the Barkhausen
moment µ(T ) itself as T → TC , leading to a maximum in
MZFC(T ). (5) Similarly, none of the systematic changes
observed in the major hysteresis loop in Figure 5 as the
system is warmed through the ordered phase can be at-
tributed to superparamagnetism, that is, to an increase
in the population of Barkhausen elements which have
reached thermal equilibrium and hence behave reversibly
with respect to the application and removal of a field.
Thus, the collapse of the coercive field is a direct conse-
quence of the intrinsic collapse of the dissipation fields,
as described by H̄d(T ) and σd(T ), while the drop in the
saturation remanence simply reflects the collapse of the
Barkhausen moment as T → TC .

4 Summary and conclusions

The analysis presented above shows that the
La0.5Sr0.5CoO3 system undergoes a continuous sec-
ond order transition into a ferromagnetic state at a
critical temperature TC = 230.9 ± 0.2 K. While the
effective critical exponents, obtained from an analysis
of the critical susceptibility maxima performed entirely
above TC , are consistent with both mean-field and
Ising (plus dipole-dipole interaction) model predictions,
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the fields required to ensure that the critical contribu-
tion to the susceptibility dominates that arising from
regular (technical) sources are substantial (≥1 kOe)
(this dominance underlies this analysis, based on the
application of equations (1–3)). Such conditions mean
that these effective exponents may not be the same as
the asymptotic ones; nevertheless the appearance of field
and temperature dependent critical maxima (Fig. 1) are
an unequivocal signature of a (continuous) transition to a
ferromagnetic state. Below TC , the system is composed of
domains and the magnetic response is dominated by the
field activated motion of domain wall fragments over local
free energy pinning barriers. The maximum observed in
the low field ZFC moment in Figure 4 and the sharp
cusp observed in the zero field differential susceptibility
in the insert in Figure 1 (the so-called Hopkinson effect)
are both caused by a competition between the collapse of
these free energy pinning barriers as the system is warmed
through the ordered phase, which enhances the response,
and the collapse of the Barkhausen moment as T → TC ,
which suppresses the response. Roughly speaking, the
inflection point in the ZFC moment below the maximum
corresponds to the temperature at which the applied field
Ha activates the most probable pinning barrier W̄d. Thus
the tendency for the maximum in the ZFC moment to
shift to lower temperatures with increasing field Ha re-
flects the precise manner in which the free energy barriers
grow with decreasing temperature, while the tendency for
the maximum to become broader is a consequence of the
expanding temperature range (TC −Tinfl) over which the
ZFC response is dominated by the temperature depen-
dence of the Barkhausen moment µ(T ), which is quite
slow except when T is very close to TC . An analogous
behaviour is observed in the temperature dependence
of the differential susceptibility χ with changes in the
static biasing field in Figure 1, and its physical origin is
the same. The analysis also quantifies the distribution of
energies stored reversibly in Barkhausen transitions, as
represented by the double well level bias. These effects are
subtle, particularly in ferromagnetic systems which tend
to be dissipation dominated, and are encoded primarily
in the amplitude and temperature dependence of the
FC moment, where they compete (at higher fields) with
elastic contributions to the response. In La0.5Sr0.5CoO3,
the bias fields are randomly distributed about zero
with a dispersion σs which is essentially temperature
independent, and only weakly dependent on applied field,
varying from σso

∼= 100 Oe at low fields Ha ≤ 100 Oe to
σso

∼= 180 Oe in higher fields Ha ≥ 1000 Oe.

In summary, the above analysis shows that
La0.5Sr0.5CoO3 can be described comprehensively as
a ferromagnet with strong irreversibility. Preisach simu-
lations show that the principal structural features of the
irreversible response, namely the pronounced bifurcation
of the FC and ZFC branches and the maximum in
the ZFC moment just below TC , are symptomatic of a
distribution of energy barriers which collapse rapidly
as T → TC , and for which moment reversal is field
activated rather than thermally activated. From this per-

spective, the irreversible behaviour of La0.5Sr0.5CoO3 is
no different from that of conventional long-range ordered
ferromagnets with domain structure like SrRuO3 [34].
Thus FC/ZFC bifurcation coupled with a ZFC maximum
are generic features of all systems with a corrugated
free energy landscape, and are not signatures of glassy
magnetic structure, contrary to recent speculations [5]
which attempt to invoke these structural elements as
partial evidence for magnetic phase separation, or to
relate them to de Almeida-Thouless instabilities [9,36].
(As mentioned earlier, anomalies in the dynamic response
have been interpreted [5,9] as evidence of cluster glass
freezing at a temperature Tf < TC . However, these
authors also concede [5] that these finite clusters perco-
late into an “infinite” ferromagnetic “backbone” for Sr
concentrations x ≥ 0.2. For canonical percolating systems
like AuFe [37], the formation of the infinite “backbone” is
independent of the cooling protocol (FC versus ZFC), and
the dynamic anomalies are associated with finite clusters
which have not merged with the infinite “backbone”.
While the notion of percolation which is induced by field
cooling, but not by zero field cooling [5], may be appealing
as an explanation of colossal magnetoresistance effects
(notwithstanding the extremely subtle energy balance
which must be involved), it is not consistent with the
present analysis, or indeed that of canonical “reentrant”
systems like AuFe [37].) Furthermore, the simulations
are able to replicate the measured irreversible response
without invoking any reentrant mechanisms, and are thus
consistent with the most recent predictions regarding the
absence of an equilibrium ferromagnetic-spin glass phase
transition in three dimensions [35].
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